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Abstract: The recently developed nonlinear ser-
vomechanism theory is applied to the attitude control of
large maneuvering spacecraft subject to sinusoidal distur-
bances and parametric uncertainties. Simulation shows
signticant  advantages of our attitude controller over the
controller resulting from the feedback linearization ap-
proach.

1. Introduction

Future spacecraft present specific and difficult control
problems, largely due to their nonlinear dynamics and
uncertainties. To better account for nonlinearity and
uncertainties inherent in the spacecraft dynamics, many
researchers have applied various nonlinear control ap-
proaches to meet these challenges. The typical nonlin-
ear approaches include input-output feedback lineariza-
tion and sliding mode control [MJ, [SL]. However, it is well
known that the feedback linearization technique is less
capable of dealing with the external disturbance acting
on the torques and spacecraft parameter variations. The
sliding mode control, though eflective in counteracting
system nonlinearities  and uncertain ies, often incurs ex-
cessive control power due to the chattering phenomenon,

The recently developed nonlinear servomechanism (or

alternatively, output regulation) theory [HR1], [IB],
[HR2], and [HL] provides a promising tool to design con-
trol system for spacecraft subject to persistent distur-
bances. Roughly, the servomechanism theory aims to de-
sign a controller for a plant such that the output of the
plant asymptotically tracks a reference input and rejects a
disturbance. Both the disturbance and reference are gen-
erated by an autonomous differential equation called the
exosystem. In contrast to the earlier developed inversion-
based approaches such as sliding mode control, and input-
output feedback linearization the nonlinear servomecha-
nism theory is based only on the existence of steady state
inverted d ynarnica of the given system, It can handle,
therefore, a larger class of nonlinear systems, e.g., non-
minimum phase nonlinear systems, Other advantages of
this approach include that it can more easily accomm~
date disturbances, and that it offers a nonlinear version of
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the ‘sepanrtion  principle” that leacls to an effective means
to synthesize an output feedback control law based on a
state feedback control law and a nonlinear observer.

In this paper, we will formulate the spacecraft attitude
control problem aa a nonlinear tracking problem subject
to sinusoidal disturbances and parametric uncertainties.
In Section 2, we summarize the basic results of the nonlin-
ear servomechanism theory. Section 3 designs a spacecraft
attitude controller using the nonlinear servomechanism
theory. Section 4 presents some simulation results on the
performance of this controller along  with a comparison to
the the feedback linearization controller. Finally, some
remarks are provided in Section 5.

2. Nonlinear Servomechanism Problem
Consider the plant described by

i(t) = f(z(t), u(t), w(i)), 2’(0)= *O
y(t) = /l(z(t),U(t), w(t)), t >0 (2.1)

where z(t)  is the n-dimensional plant state, u(t) is the m-
dimensional plant input, y(t) is the pdimensional  plant
output, and w(t) is the gl-dimensicmal  disturbance signal.
The disturbance signal is assumed to be generated by the
q-dimensional exogenous system

tiJ(t) = Cll(w(i)),  w(0) = WCI (2.2)

~!here  W.  may be known or unknown.

In addition, there is a reference input generated by a
g2-dimensional  exogenous system

i(t) = az(r(t)),  r(0) = ro (2.3)

where r. is assumed to be known, and the tracking error
is defined by

e(t) = y(t) - d(r(i)) (2.4)

For simplicity, all the functions involved in this setup
are assumed to be smooth and defined globally on the ap-
propriate Euclidean spaces, with the value zero at the re-
spective origins. All our results are stated locally in terms
of open neighborhoods of origins of appropriate Euclidean
spaces.
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We will consider the nonlinear feedback control law of
the general form

u(f) = k(z(i), z(i), r(t),  w(t))
~(t)  = g(z(t),  z(i),  y(i), r(i)) (2.5)

where z(t) is the compensator state of dimension ne to be
specified later, and the functions k(.,.,.,.) and g(.,.,.,.)
are required to be smooth and zero for zero arguments.
With an abuse of notation, the contro)  law (2,5) encom-
passes two most interesting cases:
(i) State feedback when n,= O, that is,

u(i) = k(z(t),  r(i),  w(t)) (2,6)

(ii) Output dynamic feedback when z(t)  and w(t) do not
explicitly appear in Equation (2.5), that is,

u(i) = k(z(f),  r(i))
i(t) = g(z(i),  y(f), r(i)) (2.7)

To formulate the requirements on the closed-loop sys-
tem, let Zc(i)  = (z(t)  z(t)); then, the closed-loop system
can be described by

y(t) = h,(z.(t),  r(t), w(t)), t ~ O

where hC(., .,.)  and ~C(., .,.)  are defined as

hc(z,,  r, w) = h(z, k(z, z,r, w), w)

tc(zc,  r, W)  =
[

f(z, k(z, z, r, w), w)
g(z, z,hc(ze,  r,w),  r)

(2.8)

(2.9)

The basic requirements for the closed-loop system
can be described as follows. First, the equilibrium of
tc(z,  O, O) at the origin is asymptotically stable, which
can always be guaranteed by placing the eigenvalues of
the matrix

8f.
-#Mm (2.10)

in the left half-plane. The second requirement is that, for
all sufficient] y small initial conditions ZCO, r., and Wo, the
tracking error (2.4) satisfies

lim e(i)= Ot+m (2.11)

If there exists a control law of the form (2.5) such that the
closed-loop system satisfies the above two requirements,
we say that the nonlinear servomechanism problem is (10
tally) solvable. Alternatively, we say that the control law
achieves asymptotic tracking and disturbance rejection in
the plant. In the sequel, such a control law is called a

serv~regulator.

Before stating the basic result of the nonlinear ser-
vomechanism theory, we make the following standard as-
sumptions ~B]:
Al: {$#(O, O, O), $#(0, O, O)} is stabilizable.

A2: The pair

[
[ $+(0,0,0) &(o, o,o) ] , ~(yo) %&&p]
is detectable.
A3: The equilibrium of ecosystems (2.2) and (2.3) is sta-
ble, and all the eigenvalues  of &(O) and W(O)  have zero
real parts.

Theorem 2.1: Under assumptions Al and A3, sup-
pose there exist two smooth functions x(r, w), u(r, w) de
fined in a neighborhood of the origin such that x(O, O) =
O, u(O, O) = O, and

~x(r, w) 8x(r, w)
8W

a) (UJ) +
8r

az(r) = f(x(r,  w), u(r, w), w)

h(x(r,  w), u(r, w), w) - d(r) = O (2.12)

Then, there exist a state feedback control law of the form
(2.6) such that the closed-loop system satisfies the two
requirements (2.10) and (2.11).

If the assumptions in Theorem 2.1 are satisfied, then a
desired state feedback control law can be formulated as
follows,

u(t) = u(r(t),  w(i))+ K(z(t) -- x(r(t), w(t)))  (2,13)

where the feedback gain matrix K is such that all the
eigenvalues of the matrix

t?f 8fx( O,O,O) + ~(0,0,0) K (2.14)

have negative real parts, Clearly, the existence of the
matrix A’ is guaranteed by the assumption Al. The solv-
ability conditions for (2.12) can be established using the
center manifold theory [C] and are discussed in [IB], [HL]
in detail.

Remark 2.1: It is interesting to note that, given r(t)
and w(f), the trajectories of the closed-loop system start-
ing from 20 = x(r(0),  w(0)) under control input u(f) =
u(r(t), w(t)) is given by x(r(t),  w(i)), and the tracking
error is identically zero for all t ~ O. For this reason, the
functions x(r, w) and u(r, w) can be viewed as the steady-
state response and steady-state control input required for
maintaining zero steady-state tracking error. From a geo-
metric point of view, the set {x(r, w), r, w} can be viewed
as a zero-error invariant manifold with respect to the con-
trol u(r, w). The role of the feedback control (2.13) is to
render the manifold certain stability properties such that
the trajectories starting from points sufficiently close to
the manifold asymptotically apprc,ach the manifold.

Remark 2.2: The control law (2,13) consists of two
parts, namely, a feedback gain K that stabilizes the
closed-loop system, and two feedforward functions x(r, w)
and u(r,  w) that annihilate the steady-state tracking er-
ror. Note that while the feedback gain can be readily ob-
tained via a variety of methods such as eigenvalue  assign-
ment, H2, and H*, the feed forward functions have to be
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‘ solved from the partial differential equation (2.12). Note
that,  as shown in [113] and [HLJ, solving (2.12) may be
formidable for general nonlinear systems, yet is straight-
forward for input-ouput feedback linearizable  nonlinear
systems, such as the spacecraft system to be introduced
in Section 3.

Remark 2.3: In the case where the plant state z and/or
the disturbance state w are unavailable, it is possible
to synthesize, under the additional assumption A2, an
output-feedback control law:

u(t) = k(z(i), r(t))
i(t) = g(z(t), y(i), r(t)) (2.15)

where

k(z, r) = u(r, ZZ) + K[zl - x(r, ZZ)]

[

j(q ,a:y;2\),  z~)g(z, y,r) = 1 + G [V - h(zI,  k(z, r), a)]

with Z1 E R“, 2 2 E R9’, and z = (Z1, Z2), and G is such
that all the eigenvalues  of the matrix

[
$’@w)  %(0!0,0)

o ~ (o) 1 + G [ $+(0,0,0)  ~(0,0,0)  )

have negative real parts.

3. Application to Spacecraft Attitude Con-
trol

We consider the attitude control problem for a spacecraft
in a circular orbit in an inverse square gravitational field,
and assume that the attitude of the space vehicle has no
effect on the orbit. This problem has been investigated in
[S~ using the sliding mode control method. Following the
treatment in [Sq, we can derive the spacecraft dynamics
as follows. Let &l, $2, & be the frame of principle axes
of the spacecraft, referred to as the spacecraft frame in
the sequel. Let <1, (2, &. be the reference frame defined
as follows: & is along tbe local radius vector from the
gravitational center El and through the spacecraft center
of mass E; (2 is normal to the plane of orbit; and (I, (2,
<s. forms a dextral  right-handed system.

Kinematic Equations

Let w = (WI ,LtJ2,WS)~  denote the angular velocity vector
of the spacecraft, expressed in the spacecraft frame. Let
6 = (01, 02, 09)~ be the pitch, yaw, and roll angles, respec-
tively. Then, the equations describing the evolution of the
spacecraft angular velocity with respect to the spacecraft
frame is given by

‘~ R(e)fii + w.(o) (3.1)

where U. denotes the constant orbital angular velocity of
the mass center of the spacecraft; and

[

sinOz 1
R(e) = COS$2COS09 sin6g O

-cos02sin9~  c0se3 O

u.(e)  =
[:<!!2::3;

(3.2)

(3.3)

Solving (3.1 ) for ~ gives the kinematic equations as follows

~ = R-l(0)(w  - L+(d)) (3.4)

where

[

O  cosOgsec82  -sin09sec82
R-l(0)  =  O sin9g cose3 1 (3.5)

1 -tan flzcosfla  tan f?zsinfh

Equation (3.5) is valid in the region -7r/2  < Oz < z/2.
(other representations use 4 “Euter  parameters” to avoid
such singularities)

Dynamic Equations

The dynamical equation
mass of the spacecraft is

of motion about the center of

I&+ L31U  = 3@c(o)~<c(o) + u + Td (3.6)

where 1 = diag(ll,  12, 13) is the moment of inertia of
the spacecraft with respect to the spacecraft frame; u =
(u1, UZ, us)~ is the control torque vector acting about the
axes il,~2,&3;  T’ = (~dl, Td2, &)T is a sinusoidal dis-
turbance torque vector of the form

Td{ = T~sin(w&t),  i = 1 , 2 , 3 (3.7)

with wd~ tied and Ti arbitrary; the vector {c(d) is

[1[(d (0 -sinOlcos02
L(O = f:;[;j = cosf?I  sin6’s  -t- sin91  sindzcost%

c0601c0se3 – sinOlsinOzsinOa 1
and L and & are skewsymmetric matrices given by

[

o -W3 U2

H

o -(3C (2C
6= W3 o -WI ,L= [3. o -<1.

-W2 W1 o -(2C (1C o 1
Let z = (@,w~)~.  Then, combining (3.4) and (3.6)

gives the following state space equations

x= f(~,Td)  -1- 9(z)~

1) =  h(z) (3.8)

where

$(z,  Td) =

g(z )  =

R-l (d)(w : W.(e))
~-’(-fi~W  -t 3w&(~)~(c(~) + Td 1
03X3 1I-1 ‘ h(x) := O (3.9)
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The attitude control problem is described as follows:
derive a control law u such that in the closed-loop system
O(t)  asymptotically tracks a reference trajectory O,(t) =
(Orl(t),  (lrz(i), ~,~(i))~ in the presence of the parametric
uncertainties and external disturbances, Here we assume
the reference trajectories take the form

Orj(t) = Cj(l - e~p(-~it))  (deg) i = 1,2,3

with Ci and ~i constant,

To address the above attitude control problem using
the nonlinear servomechanism theory, we first define the
two ecosystems as followx

Ii)= AWW, w(O) =  WO (3.10)

where

A w =

and

where
.

II
U)l

W2
Wg

u] =
uJ4 ‘

W6

wt5 [1
o

T1
oWo = T2
o

Tg

o d)dl 0 0 0 0
‘L&J(fl 0 0 0 0 0
0 0 0 ~dz 0 0
0 0 ‘wd2 0 0 0
0 0 0 0 0 Udg
0 0 0 0 ‘tddg o

+= A,r, r(0) = ro (3.11

‘= E13ro=[uA’= [:::
Thus the disturbance is given by

[

1 0 0 0 0 0
Td = 1OOIOOOwd~Fw,

0 0 0 0 1 0
As for the reference input, we have 8, = r(l -
czp(–cr~i))  & r. Note that this approximation does not
affect the steady state tracking error since liml-~Or = r.
Clearly, (3.9)-( 3.1 1) are exactly in the form of (2.1)-(2.3)
and satisfy assumptions A I-A3. Thus, the nonlinear ser-
vomechanism design method detailed in Section 2 is di-
rectly applicable to the attitude controller design for the
spacecraft,

Feedback Gain Design: Here we only consider the state
feedback case. The feedback gain is designed based on the
linearized system around the equilibrium (0, w) = (O, O).
The feedback gain is such that the eigenvalues of the lin-
earized closed-loop system are (-1.414 & 1.414i, -1.414+

1.414i,  -1.414 & 1.414i). This feedback gain will approxi-
mately decouple the motions of the three axes and provide
suitable damping and response speed.

Feedforward Compensator Design: The feedforward comp-
ensator  is obtained by solving for x(r, w) and u(r, w)
from equation (2.12) which takes the following specific
expression:

80(r, w) M(r, w)
8U)  ‘Ww + ~-Arr

= R-l (O(r,  w))(w(r, w) - w,(r)) (3S2)

h(r, UJ)
~w Aww+

Ow(r, w)
~r—A,r

= l-l(-ti(r,  w)lw(r,  w) + w~~c(r)l<,(r)
+  Fw+u) (3.13)

o = 6(r, w) - r (3.14)

From equation (3.14), we get

O(r, w) = r (3.15)

Solving for @(r, w) from (3.12) (which is in fact an aJge-
braic equation since the right side of (3.12) is equal to
zero due to the special forma of O(r, w) and A,) gives

w(r, w) = we(r) (3.16)

Finally from (3.13), we obtain

u(r, w) = ti(r,  w)lw(r,  w) - WOL(r)jL(r) - F’w (3.17)

4. Simulation

The performance of the controller is evaluated through
computer simulation. The parameters of the spacecraft
are taken from [S1] and are given M follows:

11 = 874.2,1z = 888.2,1s  = 97.7, w0 = 7.29 x 10-5 (rad/s2)

Other parameters are (TI, Ts, Ts) = (50,50, 50),
(~d~,~d~,tid~)  = (Z, ~,~),  (cl, CZ,CS) = (90,45,30), and
(al, a2, OS) = (1,1, 1). Two cases are studied. Case 1 is
the nominal case, that is, no disturbance is present. In
case 2 the spacecraft is subject to both disturbance and
a plus 20 Yo inertial parameter variation, Figures 1 and 2
show the attitude tracking performance for case 1 and case
2, respectively. It is seen that the presence of the distur-
bance and parametric uncertainties causes little perfor-
mance degradation. For comparison, we aLso simulated
the performance of the feedback linearization controller
designed in [AGNC] for the same cases. We found that the
feedback linearization controller acts almost equally well
as the nonlinear serv~regulator  for case 1. However, for
case 2, the performance of the feedback linearization con-
troller great] y deteriorates. Due to limitations of space,
here we only present the simulation results for case 2 as
shown in Figure 3. The main reason for the good perfor-
mance of the servo-regulator is that the steady state input
(3.17) explicitly incorporates the disturbance state w that
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cancels the effect of the disturbance, Note that here we
only considered the state feedback case. It is possible to
extend our design to the output feedback case to elimi-
nate the need of explicitly incorporating the disturbance
state w.

5. Concluding Remarks

The nonlinear servomechanism theory has been applied to
the attitude control of spacecraft subject to disturbances
and parametric uncertainties. Simulations showed the ad-
vantage of this controller over the feedback linearization
controller. The current design will be extended to the
output feedback case.
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Figure 1: Tracking performance of the nonlinear serv~regulator:  Case 1.
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Figure 2: Trading performance of the nonlinear servo-regulator: Case 2.
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Figure 3: Tracking performance of the feedback linearization controller: Case 2.


